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A Laplacian pyramid algorithm has been developed to fuse Ladar range and intensity imagery. Although
previously used with dissimilar sensors (e.g., FLIR and TV), the algorithm proves maximally efficient with pixel
coregistered imagery, as in the case of the two Ladar modes. Both target and background contrast and internal
structure are significantly enhanced, thus facilitating target segmentation and feature extraction. The algorithm can
be implemented with the existing pyramidal processors provided by Sarnoff Labs for RSTA image stabilization.

The FORTRAN/VAX software has been rewritten into C/UNIX and installed on a SUN SPARC pfocessor
within the Surrogate SemiAutonmous Vehicle (SSV). The C/UNIX software provides at least a 30-fold decrease in
execution time and a 20-fold increase in model storage capacity.

Operational target recognition was performed during Demo C in July 1995 using both actual FLIR and
synthetic LADAR imagery. 100% correct classification was obtained on the six target, 12 pose synthetic LADAR
imagery which we had generated using the LARRA/SAIL and BRLCAD models. A subsequent laboratory
experiment using the Demo C 66 FLIR target model set achieved an 86% correct classification of 56 unknown
targets. Our software was installed on the Demonstration II SSV, which was exercised at Ft. Hood, Texas during the
summer of 1996. Our algorithms/software provided the only RSTA automatic target recognition.

Our algorithm architectures fuses the results of the FLIR and LADAR hashing by using a Piecewise Level
Fusion Classifier (PLFC). Target boundaries are extracted as an intermediate step in the determination of hash
points (per edge curvature and edge intersection). Hence, we also perform multisensor fusion using combined FLIR
and LADAR boundaries to perform Recognition-By-Components (RBC). We extend the work of others to provide
viewpoint invariant recognition using perceptually organized features of geometric components. A Bayesian
reasoning structure is used to fuse the results from the Hashing PLFC and the RBC algorithms.

A We also determined an existing software suite for performing the Recognition-By-Components (RBC)
algorithms. It is the Viewpoint Independent 3D Recognition and Extraction of Objects (VITREO) code developed at
the U. of Central Florida. VITREO extracts geons from line images (including those created for hash point
extraction), and then organizes the extracted geons into a database of recognized targets. VITREO is written in C
and runs on a SUN UNIX platform
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FOREWORD

This three year project was funded by DARPA/ISO under BAA93-01 for
Autonomous Systems Technology as part of the Image Understanding (IU) program. The
objective was to provide an unmanned ground vehicle with Reconnaissance, Surveillance, and
Target Acquisition (RSTA) capabilities by onboard image processing of FLIR and LADAR
imagery. The DARPA IU Program Manager was initially Dr. Oscar Firschein, and then Dr. Tom
Strat for the last year. The ARO COTR was Dr. David Hislop. .

The Unmanned Ground Vehicle (UGV) RSTA program provided the first opportunity to
quantify geometric hashing performance in a military context, both with respect to various target
types and on an operational platform, the Surrogate Semiautonomous Vehicle (SSV). Although
several laboratory and field experiments have now been conducted, no overall assessment should
be made until the results of an independent evaluation by the Army are completed. That
evaluation is being conducted by the Night Vision and Electronic Sensors Directorate (NVESD).
To date, the geometric hashing algorithm has exhibited very favorable performance and was the
only recognition/identification software incorporated into the Demo II SSV's.

The 3-5p FLIR produced imagery much different, and often of much lower quality, than
that of 8-14p FLIR's typically used for automatic target recognition (ATR). Hence, the data
collections were insufficient for suitable model building. Too much emphasis was given to
difficult conditions (e.g., vehicles on hills, obscuration, etc.) at the expense of not first generating
a comprehensive target data base at precise orientations, ranges, and for a variety of times of day,
year, and illumination conditions. The associated data basing was marginal, due to the ambitious
data collection objectives and very limited resources made available to meet those objectives.

A shortcoming of the program was in not providing target imagery, either synthetic or
real, to demonstrate a major RSTA requirement of target identification. That is, there were no
foreign targets, even though operational scout personnel consistently stressed the need for a UGV
to discriminate friendly from enemy vehicles.

The uncertainty of whether there would be a Ladar sensor onboard the UGV, much less
what type of Ladar it would be, caused many discontinuities in developing the ATR algorithms,
particularly those that involved the fusion of Ladar with other sensors. In the case of the
geometric hashing algorithms, outstanding Ladar ATR performance was achieved against the
synthetic LASER+ and LARRA/SAIL model-generated imagery. It is unfortunate that these
models could not be tested operationally in the same manner as the FLIR ATR, i.e., on the Demo
II SSV's.

The most important contribution of our team to the UGV RSTA program has been to
transition the hashing software from a non-realtime, laboratory code to near real-time software
resident on a SPARC workstation and thus operable in a military vehicle like the SSV.
Notwithstanding any of the difficulties cited above, this ARPA initiative was an exciting and
enjoyable experience that significantly pushed forward the ATR state of the art. We were very
pleased to be a part of it.
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1. Statement of the Problem Studied

The primary objective of this project was to provide the Surrogate SemiAutonomous
Vehicle (SSV) with a Demonstration II capability of performing automatic target
recognition/identification (ATR/I). Detected objects of interest would be imaged with FLIR
and/or LADAR sensors so the ATR/I algorithms must be compatible with either sensor, as well as
exploit the synergy of processing both sensors simultaneously. Our approach does not rely upon
the precise coregistration of multiple sensors, but rather performs geometric hashing on the
individual FLIR and LADAR images.

Geometric hashing is the fundamental technique which we have applied to the military
ATR problem [Akerman, et al., 1992]. Conceived by researchers at the NYU Courant Institute
[Lamdan and Wolfson, 1988], hashing represents an object by a collection of points, which are
then matched to similarly constructed models. The matching is accomplished by iteratively
selecting pairs of points, placing them in a Euclidean geometry coordinate system, concurrently
translating and rotating all other object points to the same geometry, and then counting the
number of occurrences of object and model points in the same cell.

Geometric hashing is particularly appealing since it can be very efficiently implemented
with parallel processing. An unknown object can be simultaneously tested against thousands of
models, including specific orientations/states of each target [Bourdon and Medioni, 1990].

Our contribution to hashing algorithms has been the application of the technique to
military targets in Synthetic Aperture Radar (SAR), Forward Looking Infrared (FLIR) imagery,
and LADAR imagery. During 1988-1990, we developed a SAR point extractor, determined
thresholds and tolerances for SAR point matching, and created software for simultaneous multiple
model testing [Akerman and Patton, 1990].

In 1991, we began an investigation of FLIR imagery hashing, with particular emphasis on
the extraction of robust hash points from the targets. Algorithms were developed to select points
that represented the target’s geometrical structure and that were thus stable and repeatable under
various radiometric conditions, due both to the external environment and to the target itself,
These algorithms entailed first extracting significant contours corresponding to the target’s key
components (tread, turret, etc.). The hash points are obtained from the end points, intersections,
and key curvature of those lines.

In 1993, we refined the FLIR-associated hashing algorithms under a contract with the
Army Night Vision and Electronic Systems Directorate [Akerman et. al, 1993]. Specifically, the
algorithms were extended to second generation FLIR imagery which provides much greater detail
of target internal structure.

As shown by Figure 1, our algorithm architectures fuses the results of the FLIR and
LADAR hashing by using a Piecewise Level Fusion Classifier (PLFC). Such fusion is based upon
the work of Thomopoulos, [1987].




Target boundaries are extracted as an intermediate step in the determination of hash

points (per edge curvature and edge intersection). Hence, we also perform multisensor fusion

using combined FLIR and LADAR boundaries to perform Recognition-By-Components (RBC).

We extend the work of Lowe [1985], Biederman [1987], and others to provide viewpoint

invariant recognition using perceptually organized features of geometric components. A Bayesian
reasoning structure is used to fuse the results from the Hashing PLFC and the RBC algorithms.
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Figure 1. Overall Architecture for Multisensor Fusion Using FLIR and LADAR Identification




2. Summary of the Most Important Results

As indicated, completed work is shown by the solid blocks in Figure 1. The algorithms
were not finished because $100K (of $300K total) was deleted from our final year funding. As
the prime contractor, Nichols Research Corporation (NRC) developed the overall architecture
and the front end FLIR and LADAR image enhancement algorithms, as well as the geometric
hashing codes. Our techniques for LADAR image enhancement fuses the pixel coregistered range
and intensity images by merging the individual levels of a Laplacian Pyramid decomposition of
each of the LADAR images. The FLIR image enhancement uses classical histogram equalization
nonlinear mapping, and gradient sharpening techniques.

The geometric hashing software, originally developed for 2D SAR and FLIR imagery, has
been extended to also accommodate 3D Ladar range and intensity imagery. The 2D hashing
software was modified to allow up to ten dimensions. Currently, a 4D scheme is being used
which represents (x,y) position, range, and intensity features.

A Laplacian pyramid algorithm has been developed to fuse Ladar range and intensity
imagery. Although previously used with dissimilar sensors (e.g., FLIR and TV), the algorithm
proves maximally efficient with pixel coregistered imagery, as in the case of the two Ladar modes.
Both target and background contrast and internal structure are significantly enhanced, thus
facilitating target segmentation and feature extraction. The algorithm can be implemented with
the existing pyramidal processors provided by Sarnoff Labs for RSTA image stabilization.-

The FORTRAN/VAX software has been rewritten into C/UNIX and installed on a SUN
SPARC processor within the Surrogate SemiAutonmous Vehicle (SSV). The C/UNIX software
provides at least a 30-fold decrease in execution time and a 20-fold increase in model storage
capacity.

Operational target recognition was performed during Demo C in July 1995 using both
actual FLIR and synthetic LADAR imagery. 100% correct classification was obtained on the six
target, 12 pose synthetic LADAR imagery which we had generated using the LARRA/SAIL and
BRLCAD models. A subsequent laboratory experiment using the Demo C 66 FLIR target model
set achieved an 86% correct classification of 56 unknown targets.

Our software was installed on the Demonstration II SSV, which was exercised at Ft.
Hood, Texas during the summer of 1996. Our algorithms/software provided the only RSTA
automatic target recognition. As an adjunct to this activity, the FLIR target model set was
expanded to include 12 poses (every 30 degrees azimuth) of the M1 tank.

Subsequent to Demo II, our algorithms were selected for independent evaluation by the
Army Night Vision and Electronic Systems Directorate (NVESD). Again, only our algorithms
were chosen for the RSTA ATR evaluation. To accommodate this assessment, we had to
completely reengineer the software from its SSV-based, Khoros 1 configuration to be compatible
with the NVESD laboratory computer system. This entailed an exhaustive effort to accommodate
run scenario and image interfaces (encompassing five different camera configurations) as well as
additional setup command software to allow batch processing.
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We also determined an existing software suite for performing the Recognition-By-
Components (RBC) algorithms. It is the Viewpoint Independent 3D Recognition and Extraction
of Objects (VITREO) code developed at the U. of Central Florida. VITREO extracts geons from
line images (including those created for hash point extraction), and then organizes the extracted
geons into a database of recognized targets. VITREOQ is written in C and runs on a SUN UNIX
platform




3. Ladar Intensity and Range Image Fusion

We have previously developed an algorithm for fusing FLIR and TV, (as well as laser
intensity and TV) images into a single fused image [Akerman, 1992]. In essence, the algorithm
represents each image as a Laplacian pyramid [Burt and Adelson, 1983], and then combines the
individual sensor representations one level at a time using an appropriate pixel select criteria [Toet
et al, 1989].

The resultant image quality is significantly dependent upon pixel coregistration between
the two individual images. Hence, one might expect optimal results in the case of Ladar range
and intensity imagery from the same sensor and thus exactly pixel coregistered. Figures 2 and 3
indeed illustrate that such an image fusion does provide a significant enhancement in target and
other scene detail.

The upper subimage is the Ladar intensity return. Notwithstanding numerous pixel
“dropouts,” this image provides good internal detail of objects. However, those objects often
lack distinct borders and instead blend with their immediate background. In particular, note the
wheeled object in the lower left quadrant of Figure 2. It could be very difficult for an automatic
target recognizer to discern that it is a truck.

The middle subimage is a transform of the Ladar range image, in which a zero gray scale
(Black) is the ground plane and higher Gray Scale values represent increasing height above the
ground plane. For this representation, internal object structure is minimized, particularly near the
ground plane. However, the overall shape silhouette is enhanced.

The bottom subimage portrays the resultant image fusion. The wheeled object in Figure 2
is now clearly a truck. The other vehicles in that image are also more distinct. Figure 3 presents
two other scenes. For the one on the left, the target was already very distinctive in the intensity
image, so the merging provides no significant enhancement. In comparison, however, note the
detail in the foliage of the merged image as compared to that in either of the intensity or elevation
images.

For the scene on the right side of Figure 3, note the truck next to the tree. The truck is
not very distinct in either the intensity or the elevation images, but is “pulled out of the mud” in
the merged image.

In all instances that we have thus far processed, the merged image never has an object of
lower image quality than that of the intensity or elevation image alone. Often, there is a very
significant improvement as we have shown. Hence, all of our geometric hashing algorithms are
being applied only to Ladar imagery that has merged both the intensity and range signatures.
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Figure 4 illustrates the application of the Rule-Based Line and Point Extraction
algorithms applied to Ladar imagery of four target types. This imagery was collected with a
Loral Vought diode pumped laser radar operating at 1.06p, with a 0.4mr horizontal and vertical
angular resolution, and with a 0.15m range resolution. The targets are at ranges of 300-400m and
at depression angles of 14-18°.

The line extraction algorithms were applied to both the Laplacian Pyramid fused image (of
the Ladar intensity and elevation images) and to the elevation image alone. Note that while the
Laplacian fused image yields significant internal detail, it does not capture all of the target’s
exterior boundary. (Although not shown, this deficiency is significantly worse when only the
Ladar intensity image is used). Conversely, the Ladar elevation image yields a good segmentation
of the overall target shape but loses much of the internal target detail.

When both line extractions are combined together, all of the key geometrical components
of the target are distinctly outlined. Note also that there are no extraneous lines on the target,
except when there are obscuring clutter artifacts. Hence, the line segmentation provides a very
robust geometry for the extraction of the hash points, which are also shown in Figure 4.
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4. LADAR Hashing Models and Matching Results
4.1 LARRA/SAIL Synthetic LADAR Imagery

Synthetic LADAR range images were generated by NYU from the Ballistic Research
Laboratory (BRL) computer aided design (CAD) models for six tactical vehicles (targets) using
the Laser Radar Recognition Algorithm (LARRA)/Synthetic Assembly Image Layout (SAIL)
modeling code. The targets selected were the M60A3 tank, M113 armored personnel carrier
(APC), M35 truck with a rack or a canvas cover, M35 truck without a rack or canvas cover,
HMMWY troop version with the conventional sloped rear and HMMWYV cargo version which
has a square back. The rationale used for selection was the availability of the appropriate
BRLCAD models for unrestricted access. These images were generated at a sensor depression
angle of zero degrees to correspond to the Unmanned Ground Vehicle (UGV) scenario. Images
were created every 15 degrees from zero to 360 degrees. The original images were created using
a resolution of 0.05 milliradians (mr) in both azimuth and elevation with each pixel corresponding
to a ray trace. All output images are in the Khoros viff format. For these six targets, images at
every 30° were selected to use to build up a data base of 72 models consisting of 12 orientations
for the 6 targets.

4.2 Hash Point Models

Image chips, line extraction/segmentation and extracted hash points are shown in Figure 5
for three different orientations of the M113 APC corresponding to aspect angles of 285°, 15°, and
270°. The white pixels in the image chips correspond to range data drop outs where a very large
nontarget value was recorded. It should be noted that the line and point segmentation works even
for cases where a complete target outline in terms of edge/line structure is not obtained. It can
also be clearly seen in this figure that line end points, line intersections and points of curvature
have all been extracted for the models.

Similar results are also shown in Figure 6 for three different orientations of the M60 tank
corresponding to aspect angles of 150°, 90°, and 75°. For this case, the tank outline is less
complete than for the M113 due to much missing structure along the bottom of the tank tread. In
addition, one background point was picked up for the M60 tank at 90° aspect, but this single
extraneous point will have little or no effect on match results.

Visual comparison of Figures 5 and 6 clearly shows dissimilarities in the extracted point
structure for the two different targets (M113 and M60). This dissimilarity in the extracted
features, i. €., hash points, is the basis on which the geometric hashing algorithms are used for
target identification.
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4.3 Test Results

The geometric hashing algorithms were tested in a real-time operational scenario during
Demo C on July 27, 1995. Due to operational time constraints for the entire demonstration of
our work and the work of other contractors, only five LADAR images were processed. The five
images corresponded to a M60 tank at 270° aspect, a M113 APC at 15° aspect, a HMMWYV
cargo version at 15° aspect, a M35 truck with the rack and canvas top at 300° aspect, and another
M60 tank but with this tank at 120° aspect. The results of this real-time operational test was that
the geometric hashing algorithms produced 100% correct target recognition. It should be noted
that this realtime testing was a recognition task rather than an identification task since the
available target set did not support identification, i. e., there were not multiple types of a single
class of targets (e.g., M60, M1, T62, T72, tanks, etc.).

4.4 2D Versus 3D Ladar Processing

To perform this analysis, we used synthetic imagery generated by our LASER+ model.
We selected an MLRS (Multiple Launch Rocket System) vehicle at 1500m as the live image, and
hashed it against an M2 Bradley Infantry Fighting Vehicle model, also at 1500m. Figures 7 and 8
show a 2D projection of those two targets, along with the corresponding hash points that were
extracted. First, we hash only in a 2D space to see if a match would occur. Per Table 1, we
allowed the percentage of match threshold to be set at 40%, the point match distance threshold to
be no more than 1.5 pixels, and the orientation (image rotation) mismatch to be within ten
degrees.

Table 1. Matching Criteria for Hashing MLRS Live/M2 Model

Percentage of Match Threshold =40% Intensity Thresh Used (If Valid) = 0
Point Match Distance Threshold = 1.50 Use Range Value (1=Yes, 0=No) = 0
Point Match Tolerance Allowed+/- =1 Range Threshold Used (If Valid) = 0.0
Orientation Mismatch Threshold =10Deg % of Live Points To Use As Masters  =100%
Stop On 1st Match (1=Yes, 0=No) =90 # Of Live Points To Use As Masters = 20
Apply Affine Trans. (1=Yes,0=No) = 0 % Of Live Points To Use As Slaves =100%
Use Intensity Value (1=Yes, 0=No) =0 # Of Live Points To Use As Slaves = 20

The (master, slave) = (11,4) live hash point set (listed on the last line of Table 2) is chosen
because the percent match is the foremost criteria, provided that the average point distance and
the orientation delta thresholds are also met. In this case, the values are 1.17 pixels and 4
degrees, both of which are below threshold and thus are acceptable. Note that (master, slave) =
(19,10) live hash point set has a much lower average point distance (0.52 pixels) and orientation
delta (0°), but was not chosen because the percent of matched live points (55%) was less than the
(11,4) master, slave set.
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Figure 7. Synthetic Ladar Image of an MLRS and Corresponding Hash Point Model
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Figure 8. Synthetic Ladar Image of an M2 IFV and Corresponding Hash Points
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Table 2. 2D Hashing Results for MLRS Live/M2 Models
LIVE/MODEL SELECTION SUMMARY

LIVE % OF MODEL % OF POINTS AVGPOINT ORIENTATION
MASTER SLAVE MATCH No. MASTER SLAVE MATCH MATCHED DISTANCE MODEL LIVE
13 14 45% 1 15 23 31% 9 0.9785 180 187
13 7 45% 1 15 12 31% 9 0.8750 180 189
13 9 45% 1 15 10 31% 9 0.8017 180 190
13 9 45% 1 15 14 31% 9 0.7285 180 190
13 2 50% 1 17 5 34% 10 1.0729 180 181
13 2 50% 1 17 7 34% 10 0.9618 180 179
16 19 50% 1 24 26 34% 10 0.6476 180 180
16 10 50% 1 24 11 34% 10 0.6015 180 180
19 10 55% 1 26 11 38% 11 0.5242 180 180
11 4 60% 1 10 4 41% 12 1.1726 180 176

Table 3 summarizes the point-to-point matching of the 29 points of the MLRS model by
the 20 points of the M2 live "unknown". Any row entry of Table 3 that labels with "-1" the live
point number (and all successive entries) means that that corresponding model point was not
matched. The results of this 2D hashing is that the live MLRS would have been identified
as an M2 for this experiment, because more than 40% of the model point were matched.

The erroneous identification result is prevented when the hashing is extended into 3D,
making use of the range associated with each point. No such error occurs when the range
difference threshold is set at 0.15 meters. (That particular value was chosen since it corresponds
to the range resolution of the Ladar). Referring to Table 3, note that only 7 of the points
matched, neither of which exceeds the 40% point match criteria.

4.5 2D Ladar Hashing of Three Actual Targets

The previous subsection illustrated 2D and 3D hashing for the MLRS and M2 targets
using synthetic imagery created by our LASER+ computer model. We also performed similar 2D
hashing on Loral Vought actual Ladar imagery of three target types: an M113 armored personnel
carrier (APC) and two very similar tanks (M60A2 and M60A3). Examples of the tank imagery
and corresponding hash points are shown by Figure 4. (Also shown in this figure are the two
synthetic LASER+ targets, the M2 Bradley and the MLRS, which were used in the previously
described 3D hashing test. In Figure 4, these synthetic targets have been inserted into the same
type images as those of the M60's). This hashing experiment used five M113 and fourteen M60
images. All of the M60's were at a nominal range of 300m, yielding approximately 35 hash points
for each of those targets. However, the M113's, which are smaller in size than the M60's, were all
at a longer range of 400 meters. Those conditions yielded an average of only ten hash points per
M113, which is the significant factor causing the hashing misidentifications. That is, all target
type mismatches are M113 associated.

As shown by Table 4, six models were built from the 19 images. Those six models consist
of one M113, and five M60's each at a different azimuth. All 19 images (including the six used
for model creation) were hashed against each of the six models. The match criteria were (1) at
least 50% correspondence of the live or model points, (2) less than an average of 1.5 pixels for
the separation of the matched points, and (3) less than 20° orientation error for rotations within
the image planes of the aligned live and model points.
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Table 4. 2D Hashing Recognition Results for Tower Test Ladar Imagery (Pcc = 73.4%)

MODELS :
M113 M60A2 M60A3  MG60A3  M60A3  MG60A3 NO
120° 310° 120° 230° 270° 330° MATCH

UNKNOWNS
M113 120° 3 1 1
M60A2  310° 1 1
M60A3  120° 2 1
M60A3  230° 2
M60A3  260° 2
M60A3  270° 3
M60A3  330° 1 1

Except for M60A3 at 260°, each unknown set included the model.

Note that although the targets are at different ranges, all the hashing operations scaled the
point sets to a common 300m range. Unlike the synthetic imagery (of the M2 and MLRS targets)
used in the previous subsection, however, the range scaling does not assure that the M113 and
M60 targets are positioned precisely at the same point. As such, differences in the range (z)
values of the (x,y) hash points could not be used directly to disqualify a point match. Rather, an
additional algorithm is needed to compare the relative range differences between the model and
the live (unknown) points so as to allow 3D hashing. That algorithm was under development but
could not be completed within the reduced funding allocated to this contract.
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5. SSV Sun SPARC Software

Existing FORTRAN geometric hashing code was converted to C and enhanced to run in
real time on the Sun SPARC computers which are available on the SSVs. This C UNIX software
was delivered to Lockheed-Martin and support was also provided to install and checkout the
software to ensure proper operation of the code. This effort was crucial to the successful
demonstration for Demo C as discussed above.

5.1 Code Conversion and Enhancement

The original FORTRAN code was converted to C to run under an UNIX Sun
workstation. This was in accordance with the contract requirements for the Autonomous Systems
Technology (AST) Program. A LINUX version (PC UNIX) is also available. Various
enhancements and updates to the code were made during the conversion process. Some of these
changes were made to make the code more efficient for real time implementation, some were
made as a result of SSV requirements specified in the Lockheed-Martin Software Configuration
Control Document [Severson, 1995], some were made to make the code more portable and
essentially machine independent, some were made to increase the numerical precision of the code,
and some were made to update the original version of the code. This code development refers
not only to the code hosted on the SSV for real time usage, but also to code which was developed
to produce the hashing model files. Structured C programming techniques were used with
extensive documentation embedded in the actual code.

To enhance real time operation, the model file is read in from memory at the start of the
program by the executive controller and maintained in memory during system operation. This
results in significant speed enhancement since all software and data are memory resident. This
software is configured so that the model file can be stored and read as either a binary file or an
ASCII file. It is preferable to use binary files which results in reduced storage requirements and
enhanced speed and is compatible with the requirements specified by the Software Configuration
Control Document and the intended structure and use of the executive controller.

Code updates were made in regard to what version of the feature extraction parameters
were used to ensure total program consistency for all data. In addition, some multiple rotations
were combined into a single equivalent rotation. In addition, judicious use of either in line code
or function calls were embedded into the code structure. These techniques enhanced both speed
of computation and numerical accuracy. A range scaling algorithm was also developed to ensure
that no range mismatch existed between the prestored model data base and the operational

imagery.

The geometric hashing code is used to perform target recognition or identification based
on using a detected potential target and performing processing over an image chip. The present
size of the image chip is restricted to be 180 pixels by 180 pixels, or actually the product of the
rows and columns for the image chip must be no greater than 180% or 32,400. There is no
requirement to have a square image chip and in fact image chips are usually rectangular as used
for the actual demonstration. The true limitation at present is that the actual product of the rows
times the columns be restricted to a value of 32767. This is only because certain variables in the
program have been declared as type “short” rather than type “int.” This is not considered a
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program limitation since the specified size should be adequate for standard operational modes. It
would also be easy to change these variable types should larger size image chips be designated
for processing.

5.2 Real Time Architecture

The real time architecture was designed to be compatible with the Lockheed-Martin
Software Configuration Control Document. As such all input and output is performed in the main
program body and the geometric hashing code is called as a function from this main program.
This main program provides the hashing points from the feature extraction software which have
been hosted on either the SSV Sun SPARC computer or on the SSV Distributed Array Processor
(DAP). The model file is also read in by this main program. The output results are transferred
back to the main program which then outputs the classification results for target class and
confidence measure and the image chip along with the line segmentation and point images for
display purposes. No calls to “exit” are made internally to any of the hashing routines.

5.3 Efficient Hash Table Generation

The hash table and model file generation is all performed internally to memory for all
operations. No specialized commercial software is used for any of these functions. A previous
version of the code used the CINDEX software developed by Trio Systems Inc. This was
required in the previous system based on the hosting processor. However, this specialized
software is somewhat machine dependent and would have to be licensed for any machine on
which the software were to be hosted. These complications were avoided by using a structured
key model technique with all computations being performed internally.

The previous FORTRAN keyed-access file used to store the patterns associated with each
master-slave point pair was composed of an (X,Y) coordinate that uniquely specified a record in
the file. Interactive disk accesses are not appropriate for real time operation and would be
inconsistent with the software configuration requirements. Thus this process was replaced with a
memory resident equivalent while maintaining a similar interface for access to individual records.

There are four record types in a hash file corresponding to the following:

the master record,

the descriptor records,
the feature records, and
the coordinate records.

There is only one master record and thus no key is required for its access. A descriptor
file and a feature record exist for each target that is represented in the hash table so they can be
represented with an integer that corresponds to a particular target number in the model data base.
The coordinate records comprise the majority of the hash table and their storage and access
requires special attention. Conceptually, the key can still be considered to be composed of an
(X,Y) coordinate pair. If m, d, f;, and c, are addresses of memory locations for the respective
record types, the layout in memory of a hash table can be illustrated as follows:
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m — master record

d; — target 1 descriptor record
d, — target 2 descriptor record
d; — target 3 descriptor record

dy — target N descriptor record

Ji — target 1 feature record
Jf> — target 2 feature record
f3 — target 3 feature record

Jfv — target N feature record

¢; — (0,1) coordinate record
¢> — (0,3) coordinate record
¢ — (0,1) coordinate record

This shows the techniques for the memory resident storage and access which was a key to
the real time code implementation. The particular details of each record at this stage are not
important, but they can be ascertained by looking at the internal code structure.

The software supports both the usage of ASCII or binary model files. However, it is
recommended that binary files be used since this offers a factor of 3 to 5 reduction in storage size
over ASCII files and results in a speed decrease during operation. Since problems often arise
when transferring binary data files to different machines, the initial model files are developed and
stored as ASCII files for transferring and executable source code is sent with the files to convert
them to binary on the hosting machine. This procedure was used very successfully for this effort
and has significantly alleviated some earlier problems in the development process.

Another very important aspect of this code is that the same software used in real time
operation is used to develop new hash models. This allows new unknown models to be rapidly
added to the data base even under field operation conditions. A soldier could find a new target
type, collect sufficient image data to convince him that he had a good representation of the model
in terms of hash points and then add this to the model data base as a new target type. Of course,
the proper designation of the target type and format would be needed, but these items can be
added by an user with modest training.
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5.4 Validation Examples

During and after code development, three test cases corresponding to previous control
cases used by Nichols Research Corporation (NRC) for their initial FORTRAN version of the
code were used to verify code operation. These cases corresponded to two M60 tanks at
different aspects and one M113 APC. All results agreed within computational precision after
updating both code versions with agreed upon changes. The computational precision was based
on differences in using PCs and Sun workstations at Loral Vought and initially using a MicroVAX
IT at Nichols Research Corporation for these previous cases. The previously discussed combining
of multiple rotations into a single rotation also resulted in some small differences.

After developing the code, extracting the appropriate hashing features, and developing the
model file, a complete end to end run was made on 22 cases at Loral Vought before the code was
installed at Lockheed-Martin on the SSV computers. After installation and set up on the SSV
computers, three different test cases were run to validate correct code installation and
performance. The first test case used the Loral Vought developed model data base and
corresponding point files. These were run to verify that the hashing code itself worked as a
standalone process given known inputs. The second case used the NRC feature extraction code
which was hosted on the SSV Sun SPARC computer by a commercial software package which
converted the NRC FORTRAN code to C code. This converted code was then manually updated
to ensure correct input and output calls and system compatibility. The third check case was a
FLIR based run which used the techniques described in check case two, but added the DAP
hosted FLIR enhancement algorithms developed by NRC.

5.5 Performance Metrics

The geometric hashing software has been successfully converted and enhanced so that real
time system operation is practical . In fact it was successfully demonstrated as part of Demo C.

This new version of the software has a 30-fold decrease in execution time. This time
improvement is not due to using faster computational resources since that issue was removed
from the calculated 1mprovement factor, but is in fact due to the implementation procedure for the
software. The new version is all memory resident and performs no external accesses for any data.
The model file is stored in memory and the “live image” point file is supplied to the hashing
software from the executive controller. In addition, some other enhancements were made in the
way functions were implemented or called to make the code more modular and more efficient. In
actuality, the 30-fold decrease in execution time is a conservative number since the present
version of the code still has significant intermediate output being presented to the display for the
convenience of the developers and system analysts. This intermediate display slows the system
significantly and in a final version which would be used in actual field operations as opposed to
system technology demonstrations, this intermediate output would be suppressed.

This new version of the software also provides for a 20-fold increase in stored model
capability. This increase is not a limit but is the factor which was demonstrated based on the
available data to develop the model file. This increase is a direct result of using compact binary
files in the actual code operation and having a single model file containing multiple models as
opposed to many separate model files.
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6. FLIR Hashing Models and Matching Results

For Demo C conducted at Lockheed-Martin, Denver, in July 1995, the NRC/LV team
provided a suite of hashing-associated codes for the SSV SPARC processors. The form of that
software has been described Section 5. Two separate sensor hash tables were also created: (1) a
72 model LADAR set, which was described in Section 3, and (2) a 66 model FLIR set which will
now be addressed.

6.1 FLIR Imagery Used for Model Building

Unlike the LADAR models which were derived from synthetic imagery, the FLIR models
were produced from imagery collected by Lockheed Martin on 6 and 7 October 1994 [Munkeby,
1995]. The 3-5 micron Amber FLIR was the same type sensor as that used on the operational
SSV’s. This FLIR has a square 2.73° x 2.73° narrow FOV resolved into a 256 x 256 pixel array,
and thus a resolution of 0.19 milliradians.

The October 6 and 7 data collections were specifically to generate training data for model
building, with all targets at a fixed 961 meter range. All targets were on flat, level ground, and
the targets were rotated only in azimuth in 30° incremental steps. Each scenario consisted of
three targets at a fixed azimuth orientation with one wide FOV image taken of all three targets
simultaneously and ten each sequential narrow FOV images for each of the three targets. (For
building the FLIR model hash table, we used only one narrow FOV image, chosen randomly, for
each target).

The first three collected targets consisted of the M113 APC, the M35 truck, and a
HMMWYV. Ten scenarios (500-509) were collected on 6 October 1994 and four more scenarios
(510-513) on the following day. Table 5 summarizes the image and target truth associated with
these scenarios. The height, width, and center values describe the target chip subimage, while the
image quality is our subjective assessment of the target’s distinctness in the original, unenhanced
image. Due to various data collection problems, not all images were actually recorded (as
evidenced by no corresponding model number) and the target azimuthal increments do not
uniformly change. Such do not represent image deficiencies, but rather only a need for careful
book-keeping in cataloging the images and scoring the results.

The second target set was collected entirely on 7 October for ten scenarios (520-529). It
consisted of an M543 Wrecker, an M60 Tank, and another HMMWY. Table 6 summarizes the
model imagery for this second set, which was collected in a thoroughly consistent order (no
missing images, and steadily decreasing azimuth orientations). Unfortunately, the second target
set does not include targets at azimuth orientations of 330° and 300°. The data collection had to
be terminated prematurely due to rain.

The entire data collection occurred under marginally-acceptable weather conditions (cold,
cloudy, and increasingly overcast) with deteriorating weather (impending rain) washing out much
of the internal target detail. Such environmental conditions do not correspond with those typical
in July, which was when Demo C would occur.
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Table 5. First RSTA FLIR Target Training Set - 6 & 7 October 1994

MODEL # IMAGE VEHICLE | HEIGHT | WIDTH | X-CENTER | Y-CENTER | ANGLE | QUALITY
0 F5008023 | APC 15 19 139 162 270 VG
1 F500S030 | TRUCK 20 18 74 162 270 G
2 F500S045 | HMMWV 16 18 113 160 270 VG
3 F501S8020 | APC 17 31 149 162 240 G
4 F5015035 | TRUCK 16 30 85 164 240 P
5 F5018042 | HMMWV 14 25 110 162 240 P
6 F5025022 | APC 18 33 149 156 210 P
7 F5028032 | TRUCK 17 38 83 159 210 P
8 F5025043 | HMMWV 16 32 114 155 210 VG
9 F503S021 | APC 15 32 152 159 180 A
10 F5035038 | TRUCK 19 43 85 165 180 A
11 F5035049 { HMMWV 18 30 119 162 180 VG
12 F5045023 | APC 17 32 160 160 150 VG
13 F504S031 | TRUCK 18 42 91 158 150 VG
14 F504S042 | HMMWV 17 32 125 160 150 VG
15 F5055021 | APC 18 32 176 159 120 A
16 F505S8032 | TRUCK 19 35 97 165 120 G
17 F5055045 | HMMWV 17 25 120 154 120 A
18 F5065022 | APC 17 24 171 153 60 A
19 F5068033 | TRUCK 21 23 100 160 60 VP
20 F5068040 | HMMWV 17 20 128 156 60 P
21 F5075020 | APC 19 19 178 166 90 A
22 F5078033 | TRUCK 19 19 96 164 90 A
23 F5075043 | HMMWV 16 18 130 160 90 A
24 F508S026 | APC 17 28 174 164 300 P

F5085037 | TRUCK 19 34 105 165 300 VP
F5085047 | HMMWV 16 28 128 156 300 P
25 F509S5028 | APC 17 35 174 161 0 A
26 F509S039 | TRUCK 18 43 97 157 0 VP
F5095046 | HMMWV 15 33 120 165 0 VP
27 F5105021 | APC 14 33 169 164 30 VP
28 F510S032 | TRUCK 19 43 75 167 30 VP
29 F510S043 | HMMWV 14 32 123 171 30 A
F511S025 | APC 16 34 169 167 0 VP
F5115031 | TRUCK 21 44 72 164 0 VVP
30 F5115040 | HMMWV 15 32 129 162 0 A
31 F5125020 | APC 17 30 161 160 330 VP
32 F512S038 | TRUCK 18 43 66 172 330 VP
33 F5128046 | HMMWV 14 32 114 163 330 P
F5135024 | APC 17 28 161 164 300 VVP
34 F5135038 | TRUCK 20 32 61 164 300 P
35 F5135048 | HMMWV 14 26 122 155 300 G

Originally, we intended to rate the images as either Very Good (VG), Good (G), Average
(A), or Poor (P). As we reviewed more of the imagery, we realized that some was of such
marginal quality that we needed two additional categories: Very Poor (VP) and Very Very Poor
(VVP). Table 7 summarizes this image quality rating for all of the images. Surprisingly, the
classification performance (detailed in Section 6.4) was much better overall, as well as for most
individual targets (particularly the Wrecker and Tank), than would be inferred from Table 7.
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Table 6. Second RSTA FLIR Target Training Set - 7 October 1994

MODEL # | IMAGE VEHICLE | HEIGHT | WIDTH | X-CENTER | Y-CENTER | ANGLE | QUALITY
36 F520S023 | WRECKER 20 19 141 155 270 G
37 F520S038 | TANK 20 24 103 164 270 P
38 F5208041 { HMMWV 16 18 113 166 270 G
39 F5215020 | WRECKER 18 38 141 159 240 A
40 F5218035 | TANK 22 38 104 169 240 P
41 F521S047 | HMMWV 15 28 116 165 240 A
42 F5225026 | WRECKER 20 44 151 165 210 P
43 F5225039 | TANK 19 50 97 157 210 VP
44 F5225045 | HMMWV 15 32 127 162 210 P
45 F5238023 | WRECKER 20 44 151 153 180 P
46 F5235030 { TANK 24 49 88 160 180 VVP
47 F5235047 | HMMWV 13 30 121 160 180 A
48 F5245021 | WRECKER 20 42 159 158 150 A
49 F524S038 | TANK 24 47 57 158 150 VP
50 F5245045 | HMMWV 13 31 129 155 150 A
51 F5255022 | WRECKER 19 35 158 154 120 P
52 F5258036 | TANK 18 39 73 158 120 VVP
33 F5255041 | HMMWV 15 26 137 166 120 VP
54 F5265025 | WRECKER 21 18 168 159 90 VP
55 F526S037 | TANK 22 28 69 165 90 VVP
56 F5265046 | HMMWV 14 19 134 160 90 VP
57 F527S5021 | WRECKER 21 38 171 160 60 VP
58 F527S035 | TANK 22 40 74 164 60 P
59 F5275042 | HMMWV 14 27 135 159 60 VP
60 F5285023 | WRECKER 19 49 154 158 30 VP
61 F528S035 | TANK 23 50 33 160 30 P
62 F5285042 | HMMWV 15 32 139 163 30 VP
63 F5295021 | WRECKER 21 52 147 161 0 VP
64 F529S035 | TANK 22 61 99 157 0 VP
65 F529S042 | HMMWV 15 31 127 165 0 VP

Table 7. Subjective Evaluation of Training Image Quality

Very
Very Very Very
Good Good Average Subtotal | Poor Poor Poor  Subtotal
APC 14 7 36 57% 14 22 7 43%
TRUCK 7 14 14 35% 22 36 7 65%
HMMWV-1 29 7 28 64% 29 7 36%
WRECKER 10 20 30% 30 40 70%
TANK 40 30 30 100%
HMMWV-2 10 30 40% 10 50 60%

TOTALS 9% 8% 23% 40% 24% 30% 6% 60%
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The better than expected performance is probably due in part to the application of image
enhancement algorithms, described next, as well as some of the targets having very distinctive
shapes for most views.

6.2 Image Enhancement Algorithms

The previous section and particularly Table 7 describes the generally poor image quality of
the training imagery that was available for model building. As such, some image enhancement
algorithms were applied to the training imagery, as well as being incorporated into the front end
of the FLIR hashing software suite installed in the SSV SPARC processors. Figure 9 illustrates
these algorithms, with the original image chip shown in the upper left corner. Note the low
contrast between this M35 truck and its background.

The first algorithm provides considerable enhancement by simply linearly remapping the
original 10 bit imagery to an 8 bit format that is necessary for the other processing algorithms.
Next, a standard Histogram Equalization algorithm is applied. Some additional target detail is
then achieved by a Spatial Sharpening operator. For that final step, various window sizes (with
corresponding weights) compute the average value surrounding the pixel and then, if a threshold
is met, subtract the pixel value from that average.

Although it is obvious that this sharpening algorithm produces additional target detail, it is
computationally intensive and thus was not included in the operational SSV algorithm suite to
process unknown, live imagery. Rather, the sharpening is only used in the off-line, model building
process where increased computational time is not deleterious.

The bottom four subimages shown in Figure 9 are not part of the Image Enhancement
suite, but rather correspond to the subsequent processing steps, as already illustrated (for LADAR
imagery) in Figures 4-6. These additional subimages are included to show how well a hash point
set can be generated (from the enhanced image) which provides a good geometric representation
of the truck.

Also note that the final set of model hash points is not the same as those produced by the
point extraction algorithm. For the model building only (as opposed to the processing of the live
image), the human analyst is given the opportunity to add and/or delete points from the original
extracted set. This is typically done so that the model provides the best possible geometric
representation that the radiometric conditions would allow. Hence, points missing due to
occlusion, poor contrast, or lack of line curvature can be added to the model set. Conversely,
occasional extraneous points from the immediate background that are initially extracted can be
deleted.

6.3 Hash Point Models

Using the process illustrated in Figure 9 (in the previous section), hash point models were
created for the 66 FLIR image scenarios collected on 6 and 7 October. The corresponding
images are delineated in Tables 5 and 6 in Section 6.1. The following five figures, by target type,
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show the target at each of its orientations and the extracted hash point model that was created.
Note that in Figures 10 through 14, the target orientations are presented in the order in which
they were collected, which is not always in a monotonic angle order.

Figure 10 provides two views of the HMMWYV for most of its orientations, since imagery
was collected for that target as two different sets. The first set provides all twelve 30° azimuth
steps, whereas only ten were collected in the second set; as noted in Section 5.1, imagery at the
330° and 300° orientations was not collected during the second set.

Figures 11 and 12 provide the twelve views and corresponding point models for the two
other targets collected during the first set: the M113 APC and the M35 truck. Figures 13 and 14
provide the ten views (again the 330° and 300° orientations are absent) for the other two targets
in the second set: the M543 Wrecker and the M60 tank.

Inspection of Figures 10-14 shows that in many instances the point models do not exactly
mimic the target geometry. This is due mainly to the lack of sufficient quality in many of the
images. Also, the Line and Point Extractors are not perfect, even when the image quality is very
good. (In this respect some modest improvements to those extractors has since been initiated).
Notwithstanding these degraded point representations, they are nonetheless sufficient in almost all
instances to provide a unique representation by target type and orientation. Hence, it should not
be too surprising that excellent classification results were obtained against this 66 model set, as
discussed next.

6.4 FLIR Hashing Test Results

The 66 FLIR model hash table was initially tested at Demo C, for which two of the three
“unknown” targets (M113 APC, HMMWYV, and M35 Truck) were correctly recognized. The
very limited Demo C schedule did not allow additional target types to be tested. The key match
criteria were:

100 percent model points used
100 percent live points used
50 percent live points matched
1 pixel mismatch tolerance
1.4 average pixel mismatch
10° maximum in-plane rotational angle
disparity

The explanation of these parameters is given in [Akerman, 1994].

To quantify more thoroughly the FLIR hashing performance, an extensive laboratory
experiment was subsequently conducted using the same 66 model hash table. The original images
from which those models were derived were input into the overall hashing suite (except the
second HMMWYV target was not input). Hence, there were 56 trials, for each of which there was
a complete process of image enhancement (but without spatial sharpening), line extraction, and
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point extraction. Those automatically extracted points (without any human adjustment) were
then tested against the 66 model hash table. The same matching parameters as those of Demo C
were used, except the percent of live points to be matched was reduced to 20%.

Tables 8 and 9 give the resultant classification matrices, both for absolute numbers and
corresponding classification probabilities. The overall average classification probability is
86%, which includes all trucks and wreckers being correctly classified. These two tables
include only the live HMMWYV input images from the first set of training data (6 October 94)
since the second set is a redundant target, as well as being of very poor image quality. Referring
back to Table 3, one will note that the HMMWYV image quality is rated better than poor as 64%
on 6 October, but only 40% on 7 October. These percents correspond almost identically with the
classification results for that target for each day.

Tables 10 through 14 give the results of each trial, with each table corresponding to one of
the five target types. The table headings correspond to the match criteria, which are thoroughly
discussed in [Akerman, 1994]. However, the following elaboration may be helpful:

o Target Azimuth - This is the orientation of the target in the live (unknown) image. Due to the
sequence of data collection, those angles are not in the same order in each table. If the angle
isin ( )’s, this signifies that this target was not properly classified.

¢ Live, Model, and Match Points - The primary decision criteria is maximum percent of live
points matched. Some classification errors may have been avoided if the criteria for percent
of model points matched had also been imposed.

e Average (Pixel Mismatch) Distance and (Maximum In-Plane Rotation) Angle Difference -
Note that when these values get close to the maximum permitted, 1.4 pixels and 10 degrees,
then the outcome is more likely to be a misclassification. Such is particularly true when both
numbers are close to the threshold limits.

® Model and Live Basis Distances - These are the pixel distances between the master and slave
points in the Live image and the Model to which it is matched. When these numbers are not
the same, and particularly when they differ by a factor of two or three, this again is an
indicator of a misclassification.

None of the above criteria are sufficient just in themselves to improve the classification
performance over that achieved by the existing criteria. However, an examination of the data in
Tables 10-14 suggests that a more intelligent selection of criteria and their threshold values could
further improve performance.
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Table 8. Overall Classification Matrix

APC Truck Tank  Wrecker HMMWV

APC (M113) 9 3 — e —
Truck (M35) — 12 — — —
Tank (M60) - 1 9 —— —
Wrecker (M543) —_ — — 10 ——
HMMWV 1 —- 1 2 8

Table 9. Overall Classification Probability Matrix (P = 86%)

APC Truck Tank  Wrecker HMMWYV

APC (M113) 075 025 0 0 0
Truck (M35) 0 1.00 0 0 0
Tank (M60) 0 0.10  0.90 0 0
Wrecker (M543) 0 0 0 1.00 0
HMMWYV 0.08 0 0.08 0.17 0.67

Table 10. Classification Results for M35 Truck Target (12 of 12)

Target Points Average Angle  Basis Distance  Classification
Image# Azimuth Live Model Match  Distance Difference  Model Live  Type Model #

1 270 9 13 8 0.0 0 12 12 Truck 1

2 240 10 22 10 0.33 1 20 18 Truck 4

3 210 10 23 10 0.0 0 9 9 Truck 7

4 180 15 24 13 0.0 0 3 3 Truck 10
5 150 14 22 14 0.34 1 22 28 Truck 13
6 120 13 21 11 0.14 0 3 3 Truck 16
7 60 10 14 8 0.63 5 8 4  Truck 19
8 90 8 12 8 0.0 0 13 I3 Truck 22
9 0) 16 22 16 0.0 0 3 3 Truck 26
10 30 15 21 11 0.0 0 11 11 Truck 28
11 330 15 20 15 0.0 0 36 36 Truck 32
12 300 15 16 12 0.0 0 24 24 Truck 34
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Table 11. Classification Results for HMMWYV Target (8 of 12)
[36% of images at least poor]

Target Points Average Angle Basis Distance  Classification
Image# Azimuth Live Model Match Distance Difference Model Live  Type Model #
1 270 6 11 6 0.0 0 12 12 H 2
2 (240) 10 20 9 1.03 2 14 19 Tank 37
3 (210) 9 19 7 0.5 9 25 9 A\ 39
4 180 11 14 10 0.0 0 22 22 H 11
5 150 10 14 8 0.0 0 11 11 H 14
6 (120) 8 19 8 0.83 4 21 8 APC 31
7 (60) 8 23 8 0.98 8 15 5 A\ 48
8 90 5 10 5 0.0 0 12 12 H 23
9 30 12 17 12 0.0 0 11 11 H 29
10 0 7 12 7 0.0 0 5 5 H 30
11 330 9 15 9 0.0 0 20 20 H 33
12 300 11 15 10 0.0 0 22 22 H 35

Table 12. Classification Results fro M113 APC Target (9 of 12)

Target Points Average Angle Basis Distance  Classification
Image# Azimuth Live Model Match Distance Difference  Model Live  Type Model #

1 270 6 10 6 0.0 0 13 13 APC 0

2 240 10 15 10 0.0 0 4 4 APC 3

3 (210) 10 20 7 0.88 3 3 17 Tank 37
4 180 10 15 10 0.0 0 26 26 APC 9

5 150 8 16 8 1.12 2 8 17 APC 12
6 (120) 7 20 6 0.6 9 9 27  Tank 37
7 60 6 16 6 0.0 0 5 5 APC 18
8 90 9 13 9 0.0 0 10 10 APC 21
9 300 11 16 11 0.0 0 23 23 APC 24
10 0 10 19 10 0.0 0 7 7 APC 25
11 30 6 17 6 0.0 0 8 8 APC 27
12 (330) 5 20 5 1.31 4 14 15 Tank 37
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Table 13. Classification Results for M543 Wrecker Target (10 of 10)

Target Points Average Angle Basis Distance Classification
Image# Azimuth Live Model Match Distance Difference Model Live Type Model #

1 270 6 12 6 0.0 0 9 9 A\ 36
2 240 11 19 9 0.0 0 14 14 \\ 39
3 210 15 23 13 0.08 0 7 7 A\ 42

4 180 10 21 9 0.0 0 10 10 \' 45
5 150 9 23 8 0.0 0 27 27 w 48
6 120 11 22 11 0.0 0 5 5 A\ 51
7 90 10 12 9 0.0 0 16 16 W 54
8 60 11 15 9 0.0 0 23 23 A\ 57
9 30 13 18 7 0.24 0 15 18 \ 60
10 0 18 23 14 0.0 0 10 10 W 63

Table 14. Classification Results for M60 Tank Target (9 of 10)
Target Point. Average Angle Basis Distance Classification
Image# Azimuth Live Model Match Distance Difference  Model Live  Type Model #

1 270 10 20 10 0.87 2 8 5 Tank 37
2 240 15 21 11 0.0 0 25 25 Tank 40
3 210 13 21 8 0.63 1 25 43 Tank 43
4 (180) 11 22 9 1.08 9 11 21 Truck 13
5 150 16 21 12 0.09 0 11 11 Tank 49
6 120 9 16 8 0.0 0 25 25 Tank 52
7 90 11 14 10 0.0 0 13 13 Tank 55
8 60 11 19 11 0.0 0 28 28 Tank 58
9 30 20 22 16 0.0 0 20 20 Tank 61
10 0 13 21 11 0.0 0 18 18 Tank 64
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Appendix A. Geometric Hashing Evolution

The original idea of geometric hashing comes from the research work of matching
boundary curves [Kalvin et al, 1986]. The research done by Schwartz and Sharir [1987],
Wolfson [1987], Hong and Wolfson [1988], all rely on the technique of geometric hashing. They
develop the technique of finding invariants for boundary curves that are called footprints.

Lamdan and Wolfson [1988] give a description of the geometric hashing method. Early
prototype systems for recognizing flat industrial parts and synthesized 3D objects are reported by
Lamdan et al. [1988a, 1988b, 1990]. The features are called “interest points.” That is, the
geometric hashing method performs point pattern matching in these experiments. Gavrila and
Groen [1992] use a geometric hashing system to recognize 3D CAD models.

A parallel implementation of geometric hashing on the Connection Machine is reported by
Rigoutsos and Hummel [1991a, 1992], and also one by Khokhar and Prasanna [1993]. Rigoutsos
and Hummel [1993] also report a distributed version of geometric hashing for object recognition.

Rigoutsos and Hummel [1991b, 1991c] assume the appearance of Gaussian noise for the
position of the point pattern and derive analytic solutions for the features in hash space. A precise
weighted voting formula with a Bayesian interpretation for geometric hashing is given. Tsai
[1993] analyzes the affine invariants for line features. Line features are represented as a point in
(6,r) space.

Grimson and Huttenlocher [1990] analyze the performance of geometric hashing by
assuming that the noise model of the feature points is an e-disc. Lamdan and Wolfson derive the
false alarm rate empirically and analytically. Their analysis is performed on (r,0) space with
bounded error model. Sarachik [1992] and Sarachik and Grimson [1993] investigate the
performance of geometric hashing with the assumption of a Gaussian noise model. They obtain
predictions of operating characteristics of simple recognition systems, which show acceptable
performance under low-noise conditions.

Califano and Mohan [1991, 1994] use higher-order features to improve the performance
as well as the fault tolerance of the recognition system. Liu and Hummel [1994] also adopt the
strategy of using higher order features. The features are attributed with extra information. The
discrimination power of using attributed features are improved so that a 3D object embedded in a
complicated background can still be recognized.
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Appendix B. Theoretical Formulation for Hashing of Ladar Imagery

B.1 Model Building with Depth Values and Corner Points

The hash table is constructed that encodes the information about the models in a view-
centered fashion. Especially because we are dealing with 3D information, it may be possible
to use a different model representation strategy. However, our first object recognition strategy
uses separate models for every viewing direction. Accordingly, we begin separate models for
each target type, for each discretized viewing direction. The viewpoint direction of the model is
a two-parameter collection of locations on the "viewing sphere," although in our initial
experiments, we will assume a constant depression angle, and thus the viewpoint direction
reduces to a single parameter.

The data that are encoded for each model are of two types: relative depth data and
corner discontinuities. That is, for each model, we form two sets of data, using predictions
based on the model. One set consists of the depth information at a finely-quantized two
dimensional grid of points, resulting in a set {(x;, y;, z; )} of depth values. The location of the

origin for this collection is unimportant, since the values will only be used in terms of
differences. The second set of data consists of locations of corners that are predicted to be
visible along depth discontinuities, and can be represented as a collection of two-dimensional
locations {(x;,y;)}. The comer data can optionally be attributed with extra information, such as a

predicted orientation of the angle bisector of the corner, when projected onto the image plane.
In this case, the data takes the form {(x;,y;,6;)}. We reiterate that this information is dependent

on the model m, and that a model is a target/orientation pair.

Next, we choose basis sets. A single (x,y,z) location suffices to determine a basis set.
Theoretically, we could use all of the depth data as potential basis points, but we instead will
limit the size of the hash table and the number of representations of the model by choosing
only 3D locations corresponding to comner detections. That is, for every predicted corner
location ( x;, y;), we find a corresponding (xJ-i, Yjir zj-i) in the depth data that has the same (or

nearly the same) (x,y) coordinates, and we consider the index i as a possible basis index for
the model m. The actual basis for index i is located at (in, Yjis zji).

We then form hash table entries for the model/basis pair (m,j)). There are essentially

two hash tables, corresponding to the two kinds of data. The depth hash table consists of
entries

@y (m,i) = (X, ,¥,,2;) - x5y 25)

for all k # ji. That is, each position in the model is measured relative to the 3D location of the

basis point, and the resulting normalized positions become hash table entries for the particular
model with the particular basis.

For the comer data, we construct entries from the predicted observable comers in the
Ladar data, normalizing with respect to the (x,y) locations. Thus for every (Xk» Yk, 9k) encoding
a corner location in the model m, we form a hash entry

aTk(m,i) = (Z‘xﬁ ay_k_yji ’ ek)
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Thus the comer data entries are relative (x,y) positions with respect to the basis point
location, together with the predicted angular bisector direction of the corner.

The entries should additionally be endowed with covariance information; i.e.,
predictions about the variations of the hash values due to inaccuracies in sensing. This
information is needed in order to ensure that the weighted voting geometric hashing scheme
properly implements a Bayesian reasoning system, under the assumption that the hash
values of the observed scene data provide independent information (a conditional
independence assumption). For our preliminary studies, we will use a simplified covariance
estimation procedure. Namely, for the hash table entries ok(m,i), we assume a spherical

distribution of values centered at the 3D location of the entry, with standard deviation
proportional to the Euclidean norm of the hash value entry. For the comer data, the entry
ok(m,i) is assumed to have circular variation in the (x,y) components with standard deviation

proportional to (but with a larger constant of proportionality) the Euclidean distance from the
origin, and -the 6 component is presumed to be statistically independent and Gaussian
distributed with a fixed variance.

B.2 New Voting Schema

Data is obtained on a far coarser sampling rate, and with much greater noise than in
the case of the model data. Nonetheless, we are able to extract lines, comners, and have
readily available depth values from the observed objects.

We use a comer detector to obtain potential basis points. Currently, we are using the
C++ version of the Cox-Boie edge detector, and the line following and coalescing routines. We
have ported the Cox-Boie edge detector to KHOROS, displaying the results with Cantana.

In any case, image locations where corners are detected are located. We pick one
such point as a candidate basis location (at location, say, (xo, Yo, o)), and we perform a trial.
The algorithm must iterate over trials until all interesting locations have been explored. In a
trial, we perform hashing of the detected object subimage and weighted voting of the
model/basis candidates. Hashing works as follows.

For all pixel locations (x,y,z) near the basis point, (xo, Yo, Zo) in the scene, we compute
a relative (§, n, £) = (x,y,2) -~ (%o, Yo, Zo) value for each such point. The coordinate values
correspond to a differential distance from the observed basis point location in the scene.
When computing the depth value z, for the basis point, we use a local minimum of range
values in order to be sure that the range is obtained for the foreground object, and not the
background. Each such (€, n, {) location becomes a hash value that hashes into the three-
dimensional range data hash table. We need only concern ourselves with (€, i, £) values
that are sufficiently small that they could plausibly be on the same target as the basis point.

Likewise, nearby extracted corners are used to compute a location (£,n, 8) giving a
relative position to the basis point and the orientation of the angle bisector. This value hashes
into the three-dimensional corner-values hash table.

For each range-based hash, say (¢, n, {), nearby entries are located in the hash table.
For each entry of the form op(m,i) that is located near (&, n, §) a search is made for the entry

ok(m,i) that is closest to (€, n, ). Since the entries of the form coq(m,i) form a "sheet"
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representing the surface of the object, they will be located quite densely, and the entry
ak(m,i) that is nearest (£, n, £) will be the nearest point on this surface.

Recall that ey(m,i) is located at (xk, Yk, Zk) - (Xji. ¥ji: Zji)- This entry then receives a
vote, which replaces its current vote only if it is greater than its current vote. All votes are
initially zero. The vote for entry wg(m,i) is denoted by zx(m,i), and the vote amount, for the
depth data, depends on the distance from the point (§, n, €) to the sheet, at point w@y(m,i). If

the (x,y) coordinate locations are far apart, then the observed point is not occurring "in front" of
the model, and the vote will be zero. However, ordinarily, if there is one point of the sheet
nearby, then the nearest point will be perpendicular to the hash point, which in the nearly
orthogonal projection, means that the (x,y) components nearly match. In this case, the
distance d is essentially the different in the z components.

The vote should be large if this distance d is small, and will be negative if the distance
is large. The Bayesian theory says that the value should be

2 (mi) =Io | Prob(€,m,$)|md, 0,3, |
)=l T @y

where the Prob's measure density distribution values at the location of the hash, and the
condition in the numerator means that it is known that the model m appears with basis point i
at location (x, Yo, Zo). To model this vote, we use the formula

1 2902
( e—d_ 120, \

’ V270,

L 1 e—d’/:uz J
270,

where d is the distance between (£, n, {) and eg(m,i) and o; and o, are constants discussed
below.

z, (m,i) = log = —¢d’

The value o4 is expected depth variation (the standard deviation value, actually) due to
sensor noise, measurement noise, and also changes in the vehicle at any given location. The
units are in length and so for a high quality sensor, are likely to be on the order of a foot or
two. The value of o is the standard deviation for point to point variations of depth, without any
other knowledge. The value of C4 is (1/2)log(c2/c4), and the coefficient Co is simply (1/126%)-
(1/26%). Presumably, the weighted vote should saturate at some negative amount, and not
get too negative, reflecting the fact that a sensor drop-out is possible. Also, this formula could
easily be modified to account for the fact that the oy value should be larger for positive values

of d, (representing the possibility of occlusion of the model) than for negative values of d
(which would occur when the model has a hole in it).

For hashes of corner detections, a similar formula operates. That is, a hash to location
(x,y, ©) is used to locate nearby entries of the form wi(m,i). In this case, because corner

detections are well separated for any given model/basis combination, there is no need to
search for the nearest ® entry with model/basis (m,i). A weighted vote Zk(m,i) is recorded for
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the entry. This time, the "distance" between the hash point and the entry can be measured

by a weighted sum of the square distance in the (x,y) plane, and the square difference in the
0 variable. The z component plays no role because it has already been accounted in the
depth hashes. The weights will depend on the expected variations. Let d? represent the
weighted sum of square differences. That s,

& =“1[(;k —x; = %)’ +(y_k—yﬁ -y +a,(8, - 6)

Here, the weights a; and a; will have to be determined empirically. Then the formula for the
weighted vote is similar to before:

z,(m,j) = ¢ - c,d°

Again, the value should be clipped if it becomes too negative. Also, only comers near
the basis point need be considered. Here, the C;and C, values depend on two standard
deviation values, o and o, just as above, where the first represents expected distances of
the comers from nearby comer entries given knowledge of the placement of the model, and
the o> entry corresponds to a priori distance deviations.

Finally, votes are combined. The total weighted vote for any given model/basis is a
sum of the weighted votes for all entries bases on the model/basis:

Wim,j) = 2z,0m, 1) + Lz,(m)

This sum is performed over all model/basis sets, and model/bases that receive a large
weighted vote are candidate detections.

The result is that a model that is likely to be present will receive a large corresponding vote for
some (m,i) pair, providing the chosen basis location , (xo, Yo, Zo) lies near a corner of a model
point. We thus see that it is extremely important to be able to extract from the detected
subimage basis points (in our case, corner points) that correspond to corner points pre-stored
as basis points in the models.
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